Fork me on GitHub

Keras 序贯(Sequential)模型

序贯(Sequential)模型

序贯模型是多个网络层的线性堆叠,可理解为多个网络层的线性函数拟合堆叠。

可以通过向Sequential模型传递一个layer的list来构造该模型:

1
2
3
4
5
6
7
8
9
from keras.models import Sequential
from keras.layers import Dense, Activation
model = Sequential([
Dense(32, units=784),
Activation('relu'),
Dense(10),
Activation('softmax'),
])

也可以通过.add()方法一个个的将layer加入模型中:

1
2
3
model = Sequential()
model.add(Dense(32, input_shape=(784,)))
model.add(Activation('relu'))

指定输入数据的shape

模型需要知道输入数据的shape,因此,Sequential的第一层需要接受一个关于输入数据shape的参数,后面的各个层则可以自动的推导出中间数据的shape,因此不需要为每个层都指定这个参数。有几种方法来为第一层指定输入数据的shape

  • 传递一个input_shape的关键字参数给第一层,input_shape是一个tuple类型的数据,其中也可以填入None,如果填入None则表示此位置可能是任何正整数。数据的batch大小不应包含在其中
  • 有些2D层,如Dense,支持通过指定其输入维度input_dim来隐含的指定输入数据shape。一些3D的时域层支持通过参数input_diminput_length来指定输入shape。
  • 如果你需要为输入指定一个固定大小的batch_size(常用于stateful RNN网络),可以传递batch_size参数到一个层中,例如你想指定输入张量的batch大小是32,数据shape是(6,8),则你需要传递batch_size=32input_shape=(6,8)
1
2
3
4
5
model = Sequential()
model.add(Dense(32, input_dim=784))
model = Sequential()
model.add(Dense(32, input_shape=784))

编译

在训练模型之前,我们需要通过compile来对学习过程进行配置。compile接收三个参数:

  • 优化器optimizer:该参数可指定为已预定义的优化器名,如rmspropadagrad,或一个Optimizer类的对象,详情见optimizers
  • 损失函数loss:该参数为模型试图最小化的目标函数,它可为预定义的损失函数名,如categorical_crossentropymse,也可以为一个损失函数。详情见losses
  • 指标列表metrics:对分类问题,我们一般将该列表设置为metrics=['accuracy']。指标可以是一个预定义指标的名字,也可以是一个用户定制的函数.指标函数应该返回单个张量,或一个完成metric_name - > metric_value映射的字典.请参考性能评估
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
# For a multi-class classification problem
model.compile(optimizer='rmsprop',
loss='categorical_crossentropy',
metrics=['accuracy'])
# For a binary classification problem
model.compile(optimizer='rmsprop',
loss='binary_crossentropy',
metrics=['accuracy'])
# For a mean squared error regression problem
model.compile(optimizer='rmsprop',
loss='mse')
# For custom metrics
import keras.backend as K
def mean_pred(y_true, y_pred):
return K.mean(y_pred)
model.compile(optimizer='rmsprop',
loss='binary_crossentropy',
metrics=['accuracy', mean_pred])

训练

Keras以Numpy数组作为输入数据和标签的数据类型。训练模型一般使用fit函数。下面是一些例子。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
# For a single-input model with 2 classes (binary classification):
model = Sequential()
model.add(Dense(32, activation='relu', input_dim=100))
model.add(Dense(1, activation='sigmoid'))
model.compile(optimizer='rmsprop',
loss='binary_crossentropy',
metrics=['accuracy'])
# Generate dummy data
import numpy as np
data = np.random.random((1000, 100))
labels = np.random.randint(2, size=(1000, 1))
# Train the model, iterating on the data in batches of 32 samples
model.fit(data, labels, epochs=10, batch_size=32)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
# For a single-input model with 10 classes (categorical classification):
model = Sequential()
model.add(Dense(32, activation='relu', input_dim=100))
model.add(Dense(10, activation='softmax'))
model.compile(optimizer='rmsprop',
loss='categorical_crossentropy',
metrics=['accuracy'])
# Generate dummy data
import numpy as np
data = np.random.random((1000, 100))
labels = np.random.randint(10, size=(1000, 1))
# Convert labels to categorical one-hot encoding
one_hot_labels = keras.utils.to_categorical(labels, num_classes=10)
# Train the model, iterating on the data in batches of 32 samples
model.fit(data, one_hot_labels, epochs=10, batch_size=32)
-------------本文结束感谢您的阅读-------------

本文标题:Keras 序贯(Sequential)模型

文章作者:ElwinHe

发布时间:2017年10月15日 - 17:10

最后更新:2018年01月08日 - 22:01

原始链接:http://www.elwinhe.xyz/blog/df5635be.html

许可协议: 署名-非商业性使用-禁止演绎 4.0 国际 转载请保留原文链接及作者。